Generalized Clustering via Kernel Embeddings
نویسندگان
چکیده
We generalize traditional goals of clustering towards distinguishing components in a non-parametric mixture model. The clusters are not necessarily based on point locations, but on higher order criteria. This framework can be implemented by embedding probability distributions in a Hilbert space. The corresponding clustering objective is very general and relates to a range of common clustering concepts.
منابع مشابه
Embed and Conquer: Scalable Embeddings for Kernel k-Means on MapReduce
The kernel k-means is an effective method for data clustering which extends the commonly-used k-means algorithm to work on a similarity matrix over complex data structures. It is, however, computationally very complex as it requires the complete kernel matrix to be calculated and stored. Further, its kernelized nature hinders the parallelization of its computations on modern scalable infrastruc...
متن کاملScalable Embeddings for Kernel Clustering on MapReduce
There is an increasing demand from businesses and industries to make the best use of their data. Clustering is a powerful tool for discovering natural groupings in data. The k-means algorithm is the most commonly-used data clustering method, having gained popularity for its effectiveness on various data sets and ease of implementation on different computing architectures. It assumes, however, t...
متن کاملPartitioning Well-Clustered Graphs: Spectral Clustering Works!
In this work we study the widely used spectral clustering algorithms, i.e. partition a graph into k clusters via (1) embedding the vertices of a graph into a low-dimensional space using the bottom eigenvectors of the Laplacian matrix, and (2) partitioning the embedded points via k-means algorithms. We show that, for a wide class of graphs, spectral clustering algorithms give a good approximatio...
متن کاملA Weighted Sample’s Fuzzy Clustering Algorithm With Generalized Entropy
Combined with weight of samples and kernel function, fuzzy clustering method with generalized entropy is studied. Objective function for fuzzy clustering with generalized entropy based on sample weighting is obtained. Following that, fuzzy clustering algorithm with generalized entropy based on sample weighting is presented. In addition, by introducing kernel into the presented objective functio...
متن کاملA Kernel Fuzzy Clustering Algorithm with Generalized Entropy Based on Weighted Sample
Aiming at fuzzy clustering with generalized entropy, a kernel fuzzy clustering algorithm with generalized entropy based on weighted sample is presented. By introducing weight of sample into objective function for fuzzy clustering with generalized entropy, we obtain optimization problem for fuzzy clustering with generalized entropy based on weighted sample. And we use Lagrange multiplier method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009